jueves, 6 de noviembre de 2008

Anatomia Humana



La anatomía humana es la ciencia —de carácter práctico y morfológico principalmente— dedicada al estudio de las estructuras macroscópicas del cuerpo humano; dejando así el estudio de los tejidos a la histología y de las células a la citología y biología celular. La anatomía humana es un campo especial dentro de la anatomía general (animal).
Bajo una visión sistemática, el cuerpo humano —como los cuerpos de los animales—, está organizado en diferentes niveles según una jerarquía. Así, está compuesto de aparatos. Éstos los integran sistemas, que a su vez están compuestos por
órganos, que están compuestos por tejidos, que están formados por células, que están formados por moléculas, etc. Otras visiones (funcional, morfogenética, clínica, etc.), bajo otros criterios, entienden el cuerpo humano de forma un poco diferente.La anatomía humana es la ciencia —de carácter práctico y morfológico principalmente— dedicada al estudio de las estructuras macroscópicas del cuerpo humano; dejando así el estudio de los tejidos a la histología y de las células a la citología y biología celular. La anatomía humana es un campo especial dentro de la anatomía general (animal).
Bajo una visión sistemática, el cuerpo humano —como los cuerpos de los animales—, está organizado en diferentes niveles según una jerarquía. Así, está compuesto de aparatos. Éstos los integran sistemas, que a su vez están compuestos por
órganos, que están compuestos por tejidos, que están formados por células, que están formados por moléculas, etc. Otras visiones (funcional, morfogenética, clínica, etc.), bajo otros criterios, entienden el cuerpo humano de forma un poco diferente.

Ramas y divisiones
Algunas ramas o disciplinas como la
osteología, la miología, la artrología, la angiología o la neuroanatomía cercan los límites de estudio del cuerpo humano de una manera más particular. Así, la miología realiza el estudio especifico de los músculos, su características y funciones; y la neuroanatomía realiza el estudio del sistema nervioso en forma extensiva.
La anatomía sistemática o descriptiva: esquematiza el estudio del cuerpo humano fraccionándolo en las mínimas partes constituyentes, y organizándolas por sistemas y aparatos.
La anatomía topográfica o regional: organiza el estudio del cuerpo por regiones siguiendo diversos criterios. La anatomía regional tiende a un arreglo más funcional y práctico, bajo un entendimiento más abarcativo de las relaciones entre las diferentes estructuras componentes. La anatomía de superficie es un área esencial en el estudio, pues los recuadros de anatomía de superficie ofrecen una información visible y táctil sobre las estructuras que se sitúan debajo de la piel.
La anatomía clínica: pone énfasis sobre el estudio de la estructura y la función en correlación a situaciones de índole médico-clínica (y otras ciencias de la salud). Aquí importan diferentes áreas como: la anatomía quirúrgica; la anatomía radiológica y ultrasonográfica en relación al diagnóstico por imágenes; la anatomía morfogenética que se relaciona con las enfermedades congénitas del desarrollo; la anatomopatología, etc.
La anatomía artística: trata de las cuestiones anatómicas que afectan directamente a la representación artística de la figura humana. Por ejemplo, los músculos que aparecen superficialmente y sus tensiones según las diferentes posturas y/o esfuerzos; las transformaciones anatómicas que se producen en función de la edad, de la "raza" (o mejor dicho
clina o fisiotipo), de las enfermedades; las transformaciones anatómicas debidas al gesto y/o las emociones se estudian en una subdivision de la anatomía humana artística denominada fisiognomía o bien fisiognómica.
Hay otras modalidades:
anatomía comparada, anatomía funcional

Sistemas y aparatos del cuerpo humano
Conceptos claves
Sistema: es un grupo de órganos asociados que concurren en una función general y están formados predominantemente por los mismos tipos de
tejidos. Por ejemplo: el sistema esquelético, el sistema cardiovascular, el sistema nervioso, etc.
Aparato: es un grupo de sistemas que desempeñan una función común y más amplia. Por ejemplo el
aparato locomotor, integrado por los sistemas muscular, esquelético, articular y nervioso.
Aparato digestivo: procesado de la comida, boca, esófago, estómago, intestinos y glándulas anexas.
Sistema endocrino: comunicación dentro del cuerpo mediante hormonas.
Aparato excretor: eliminación de residuos del cuerpo mediante la orina.
Sistema inmunitario: defensa contra agentes causantes de enfermedades.
Sistema integumentario: piel, pelo y uñas.
Sistema muscular: movimiento del cuerpo.
Sistema nervioso: recogida, transferencia y procesado de información, por el cerebro y los nervios, en este interactuan los AINES
Aparato reproductor: los órganos sexuales.(Masculinos y Femeninos)
Aparato respiratorio: los órganos empleados para la respiración son los pulmones. dentro de los cuales podemos encontrar los Bronquiolos, cilius etc.
Sistema óseo: apoyo estructural y protección mediante huesos.
Sistema articular: formado por las articulaciones y ligamentos asociados que unen el sistema esquelético y permite los movimientos corporales.
Aparato locomotor: conjunto de los sistemas esquelético, articular y muscular. Estos sistemas coordinados por el sistema nervioso permiten la locomoción.
Sistema cardiovascular: formado por el corazón, arterias, venas y capilares
Sistema linfático: formado por los capilares, vasos y ganglios linfáticos, bazo, Timo y Médula Ósea.
Sistema circulatorio: conjunto de los sitemas cardiovascular y linfático.


lunes, 3 de noviembre de 2008

ARN


Ácido ribonucleico

El ácido ribonucleico (ARN o RNA) es un ácido nucleico formado por una larga cadena de nucleótidos. Se ubica en las células de tipo procariota y las de tipo eucariota. El ARN se define también como un material genético de ciertos virus (virus ARN) y, en los organismos celulares, molécula que dirige las etapas intermedias de la síntesis proteica. En los virus ARN, esta molécula dirige dos procesos: la síntesis de proteínas (producción de las proteínas que forman la cápsula del virus) y replicación (proceso mediante el cual el ARN forma una copia de sí mismo). En los organismos celulares es otro tipo de material genético, llamado ácido desoxirribonucleico (ADN), el que lleva la información que determina la estructura de las proteínas. Pero el ADN no puede actuar solo, y se vale del ARN para transferir esta información vital durante la síntesis de proteínas (producción de las proteínas que necesita la célula para sus actividades y su desarrollo).

Como el ADN, el ARN está formado por una cadena de compuestos químicos llamados nucleótidos. Cada uno está formado por una molécula de un azúcar llamado ribosa, un grupo fosfato y uno de cuatro posibles compuestos nitrogenados llamados bases: adenina, guanina, uracilo y citosina. Estos compuestos se unen igual que en el ácido desoxirribonucleico (ADN). El ARN se diferencia químicamente del ADN por dos cosas: la molécula de azúcar del ARN contiene un átomo de oxígeno que falta en el ADN; y el ARN contiene la base uracilo en lugar de la timina del ADN.

El ARN es transcrito desde el ADN por enzimas llamadas ARN polimerasas y procesado en el transcurso por muchas más proteínas. El uracilo, aunque es muy diferente, puede formar puentes de hidrógeno con la adenina, lo mismo que la timina lo hace en el ADN. El porqué el ARN contiene uracilo en vez de timina es actualmente una pregunta sin respuesta.


Flujo de la información genética

El material genético de las células se encuentra en forma de ADN. Dentro de las moléculas de ADN se encuentra la información necesaria para sintetizar las proteínas que utiliza el organismo; pero el proceso no es lineal, es bastante complejo. El ADN no se traduce directamente en proteínas.

En las células eucariotas el ADN se encuentra encerrado en el núcleo. La síntesis de ADN se hace en el núcleo, así como también la síntesis de ARN, pero la síntesis de proteínas ocurre en el citoplasma. El mecanismo por el cual la información se trasvasa desde el núcleo celular al citoplasma es mediante la trascripción del ARN a partir del ADN y de la traducción de proteínas a partir de ARN.

ARN, el mensajero

Parte del ADN se transcribe en ARN. El ARN va como un mensajero al citoplasma y allí el ribosoma es el lugar físico para la traducción de los genes a proteínas.

Tipos de ARN


ARN en otros organismos

El ARN es el material genético usado por los virus, y el ARN también es importante en la producción de proteínas en otros organismos vivos. La mecánica del ARN en los organismos eucarioticos es similar en los organismos procarióticos. El ARN puede moverse dentro de las células de los organismos vivos y por consiguiente sirve como una suerte de mensajero genético, transmitiendo la información guardada en el ADN de la célula, desde el núcleo hacia otras partes de la célula donde se usa para ayudar a producir proteínas. Una sola hebra de ADN se usa a la vez, el RNA polimerasa es la enzima que cataliza el proceso y las bases nitrogenadas son las mismas. Solo que en los procariotas, no existe el núcleo delimitado por membrana (carioteca).

Transcripción

El ARN se transcribe a partir de una de las dos cadenas del ADN. En caso contrario, al transcribirse ambas al mismo tiempo, de una de las hélices saldría una proteína y de la otra algo totalmente diferente.

Por ejemplo, si en una de las cadenas de ADN hubiera: GATACA, en la otra cadena, la homóloga, debería haber: CTATGT.

La primera al transcribirse a ARN daría dos codones: GAU-ACA. La segunda CUA-UGU.

La primera formaría la cadena de aminoácidos siguiente. En el primer caso: Ácido Aspártico-Treonina y en el segundo caso: Leucina-Cisteína.

Que sólo se transcriba una hélice no significa que siempre sea la misma a lo largo de todo el cromosoma. Puede transcribirse una hélice en un sitio y otra en otro.

En la traducción de codones a aminoácidos intervienen otras moléculas de ARN, las llamadas ARN de transferencia.

Algunas moléculas de ARN presentan actividad catalítica, y son conocidas como ribozimas. La mayoría de los ARN son autocatalíticos, ya que catalizan su propio procesamiento. Su hallazgo es relativamente reciente, y antes se consideraba que solo las proteínas eran las únicas macromoléculas capaces de poseer actividad catalítica.


Bases Nitrogenadas y complemento

Están formadas por pares de bases, la unión de estas es semejante a la del ADN, pero difiere en que la adenina (A) se une al uracilo (U), entonces su complemento es:

- Uracilo (U) con Adenina (A)

- Citosina (C) con Guanina (G)

U - A

C - G

Azúcar

El ARN contiene el glúcido pentosa (o sea de con 5 carbonos) llamada ribosa y sus moléculas están formadas también por pares de bases, de ahí ribonucleico.

Función a la materia viva

La función principal del ARN es servir como intermediario a la información que le lleva el ADN en forma de genes y la proteína final codificada por esos genes. El ARN es transcrito desde el ADN por enzimas llamadas ARN polimerasas y procesado por muchas más proteínas. El código genético de las células se encuentra en forma de ADN. Dentro de las moléculas de ADN se encuentra la información necesaria para sintetizar las proteínas que utiliza el organismo, pero el proceso no es lineal, es bastante complejo.

jueves, 16 de octubre de 2008

ADN


El ADN es un ácido nucleico que contiene las instrucciones genéticas usadas en el desarrolloorganismos vivos conocidos, excepto algunos virus cuyo material genético es ARN. La función principal de las moléculas de ADN es el de ser portador y transmisor entre generaciones de información genética. El ADN a menudo es comparado metafóricamente a un manual de instrucciones, ya que este contiene las "instrucciones" para construir otros componentes de las células, como moléculas de ARN y proteína. Los segmentos de ADN que llevan la información genética se llaman genes, aunque otras secuencias de ADN tienen funciones estructurales o están implicadas en la regulación del empleo de esta información genética; de esta manera, el ADN adopta un papel multifuncional y básico. y el funcionamiento de todos los
Químicamente, el ADN es un largo polímero de unidades simples llamadas nucleótidos con un armazón hecho de azúcares y grupos de fosfato unidos alternativamente entre sí mediante enlaces de tipo éster. Unido covalentemente a cada azúcar se encuentra una base nitrogenada: adenina, timina, citosina o guanina. La disposición secuencial de estas cuatro bases a lo largo de la cadena es l
a que codifica la información. Esta información es interpretada usando el código genético, que especifica la secuencia de los aminoácidos de las proteínas, según una correspondencia de un triplete de nucleótidos (codón) por cada aminoácido. El código es interpretado copiando los tramos de ADN en un ácido nucleico relacionado, el ácido ribonucleico (ARN), en un proceso llamado transcripción.
Dentro de las células, el ADN está organizado en estructuras llamadas cromosomas. Estos cromosomas se duplican antes de que las células se dividan, en un proceso llamado replicación de ADN. Los organismos Eucariotas (animales, plantas, y hongos) almacenan la inmensa mayoría de su ADN dentro del núcleo celular y una mínima parte en los organánulos celulares mitocondrias, y en los cloroplastos en caso de tenerlos; en procariotas (las bacterias y archaeas) se encuentra en el citoplasma de la célula; y en los virus de ADN, se encuentra en el interior de la cápsida. Las proteínas cromáticas, como las histonas, comprimen y organizan el ADN dentro de los cromosomas. Estas estructuras compactas dirigen las
interacciones entre el ADN y otras proteínas, ayudando al control de las partes del ADN que son transcritas.


ESTRUCTURA.

El ADN es una molecula bicatenaria, es decir, está formada por dos cadenas dispuestas de forma antiparalela y con las bases nitrogenadas enfrentadas. En su estructura tridimensional, se distinguen distintos niveles:

  1. Estructura primaria:
    • Secuencia de nucleotidos encadenados. Es en estas cadenas donde se encuentra la información genética, y dado que el esqueleto es el mismo para todos, la diferencia de la información radica en la distinta secuencia de bases nitrogenadas. Esta secuencia presenta un código, que determina una información u otra, según el orden de las bases.
  2. Estructura secundaria:
    • Es una estructura en doble helice. Permite explicar el almacenamiento de la información genética y el mecanismo de duplicación del ADN. Fue postulada por Watson y Crick, basándose en: primero, la difracción de rayos X que habían realizado Franklin, Wilkins; y segundo, la equivalencia de bases de Chargaff, que dice que la suma de adeninas más guaninas es igual a la suma de timinas más citosinas.
    • Es una cadena doble, dextrógira o levógira según el tipo de ADN. Ambas cadenas son complementarias, pues la adenina de una se une a la timina de la otra, y la guanina de una a la citosina de la otra. Ambas cadenas son antiparalelas, pues el extremo 3´ de una se enfrenta al extremo 5´ de la otra.
    • Existen tres modelos de ADN. El ADN de tipo B es el más abundante y es el descubierto por Watson y Crick.

  3. Estructura terciaria
    • Se refiere a como se almacena el ADN en un espacio reducido, para formar los cromosomas. Varía según se trate de organismos procariotas o eucariotas:
    1. En procariotas el ADN se pliega como una súper-hélice, generalmente en forma circular y asociada a una pequeña cantidad de proteínas. Lo mismo ocurre en las mitocondrias y en los cloroplastos.
    2. En eucariotas, dado que la cantidad de ADN de cada cromosoma es muy grande, el empaquetamiento ha de ser más complejo y compacto; para ello se necesita la presencia de proteínas, como las y otras proteinas de naturaleza no histónica (en los espermatozoides estas proteínas son las protaminas).


ADN